Affiliation:
1. College of Wooster, 931 College Mall, Wooster, Ohio 44691
2. Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Constance, Germany
3. Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania 15701
Abstract
ABSTRACT
We characterized the calcineurin (
CaN
) gene family, including the subunits
CaNA
and
CaNB
, based upon sequence information obtained from the
Paramecium
genome project.
Paramecium tetraurelia
has seven subfamilies of the catalytic CaNA subunit and one subfamily of the regulatory CaNB subunit, with each subfamily having two members of considerable identity on the amino acid level (≥55% between subfamilies, ≥94% within CaNA subfamilies, and full identity in the CaNB subfamily). Within CaNA subfamily members, the catalytic domain and the CaNB binding region are highly conserved and molecular modeling revealed a three-dimensional structure almost identical to a human ortholog. At 14 members, the size of the CaNA family is unprecedented, and we hypothesized that the different CaNA subfamily members were not strictly redundant and that at least some fulfill different roles in the cell. This was tested by selecting two phylogenetically distinct members of this large family for posttranscriptional silencing by RNA interference. The two targets resulted in differing effects in exocytosis, calcium dynamics, and backward swimming behavior that supported our hypothesis that the large, highly conserved CaNA family members are not strictly redundant and that at least two members have evolved diverse but overlapping functions. In sum, the occurrence of CaN in
Paramecium
spp., although disputed in the past, has been established on a molecular level. Its role in exocytosis and ciliary beat regulation in a protozoan, as well as in more complex organisms, suggests that these roles for CaN were acquired early in the evolution of this protein family.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献