ATBF1, a multiple-homeodomain zinc finger protein, selectively down-regulates AT-rich elements of the human alpha-fetoprotein gene.

Author:

Yasuda H,Mizuno A,Tamaoki T,Morinaga T

Abstract

ATBF1 is a 306-kDa protein containing four homeodomains, 17 zinc finger motifs, and several segments potentially involved in transcriptional regulation (T. Morinaga, H. Yasuda, T. Hashimoto, K. Higashio, and T. Tamaoki, Mol. Cell. Biol. 11:6041-6049, 1991). At least one of the homeodomains of ATBF1 binds to an AT-rich element in the human alpha-fetoprotein (AFP) enhancer (enhancer AT motif). In the present work, we analyzed the transcriptional regulatory activity of ATBF1 with respect to the enhancer AT motif and similar AT-rich elements in the human AFP promoter and the human albumin promoter and enhancer. Gel retardation assays showed that ATBF1 binds to the AFP enhancer AT motif efficiently; however, it binds weakly or not at all to other AT-rich elements in the AFP and albumin regulatory regions studied. Alterations of the enhancer AT motif by site-specific mutagenesis resulted in the loss of binding of ATBF1. Cotransfection experiments with an ATBF1 expression plasmid and the chloramphenicol acetyltransferase (CAT) gene fused to AFP promoter or enhancer fragments showed that ATBF1 suppressed the activity of AFP enhancer and promoter regions containing AT-rich elements. This suppression was reduced when the mutated AT motifs with low affinity to ATBF1 were linked to the CAT gene. The ATBF1 suppression of AFP promoter and enhancer activities appeared to be due, at least in part, to competition between ATBF1 and HNF1 for the same binding site. In contrast to the AFP promoter and enhancer, the albumin promoter and enhancer were not affected by ATBF1, although they contain homologous AT-rich elements. These results show that ATBF1 is able to distinguish AFP and albumin AT-rich elements, leading to selective suppression of the AFP promoter and enhancer activities.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3