The interleukin-1 receptor antagonist can either reduce or enhance the lethality of Klebsiella pneumoniae sepsis in newborn rats

Author:

Mancilla J1,García P1,Dinarello C A1

Affiliation:

1. Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts.

Abstract

Klebsiella pneumoniae, a worldwide cause of nosocomial infections, is one of the most common causes of death in newborns in nurseries. In this study, we investigated the role of interleukin-1 (IL-1) in an experimental animal model of neonatal sepsis, using a natural antagonist of IL-1 receptors, the IL-1 receptor antagonist (IL-1Ra), to block IL-1's effects in neonatal Klebsiella sepsis in the absence of antibiotic treatment. Newborn Wistar-Kyoto rats were injected intraperitoneally with a single dose (10 mg/kg) of either IL-1Ra (n = 43) or human serum albumin as a control (n = 40). At the same time, a 50% lethal dose of K. pneumoniae was injected subcutaneously. No antibiotics were given at any time. After 10 days, survival was 60% for the albumin group and 80% for the IL-1Ra group (P < 0.01). IL-1Ra treatment also afforded protection when the dose of bacteria was increased sixfold (P < 0.01). There were two episodes of leukopenia in the control group, which were suppressed by IL-1Ra (P < 0.01 and P < 0.001). IL-1 and IL-6 levels were lower in the IL-1Ra-treated group (P < 0.05 and P < 0.001, respectively). No differences between the two groups were observed in the number of bacteria in cultures of the blood, lungs, liver, or spleen. When IL-1Ra (10 mg/kg) was given both at time zero and 24 h after bacterial challenge, lethality was significantly increased (P < 0.01). Single doses of IL-1Ra of from 20 to 40 mg/kg progressively increased lethality compared with controls (P < 0.01) in both Wistar-Kyoto and Sprague-Dawley strain rats. In the same model, low doses of IL-1 itself (0.4 ng per rat), given 24 h prior to bacterial challenge, afforded protection (P < 0.001). These studies suggest that, in the absence of antibiotics, partial blockade of IL-1 receptors improves survival, whereas a longer or greater blockade increases lethality in newborn rats infected with K. pneumoniae.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3