The Mode and Duration of Anti-CD28 Costimulation Determine Resistance to Infection by Macrophage-Tropic Strains of Human Immunodeficiency Virus Type 1 In Vitro

Author:

Creson Jennifer R.1,Lin Andy A.1,Li Qun1,Broad David F.1,Roberts Margo R.1,Anderson Stephen J.1

Affiliation:

1. Cell Genesys, Inc., Foster City, California 94404

Abstract

ABSTRACT We have investigated the ability of anti-CD28 antibody costimulation to induce resistance to macrophage (M)-tropic strains of human immunodeficiency virus type 1 (HIV-1) in vitro. Our results confirm the observations of Levine et al. (15) that stimulation of CD4 T cells with anti-CD3/anti-CD28 antibodies coimmobilized on magnetic beads renders the cells resistant to infection by M-tropic strains of HIV-1. The resistance was strongest when the beads were left in the cultures throughout the experiment. In contrast, stimulation of CD4 T cells with the same antibodies immobilized on the surface of plastic culture dishes failed to induce resistance and resulted in high levels of p24 production. This was true even if the cells were passaged continuously on freshly coated plates. If the beads were removed after initial stimulation, p24 production increased over time and produced a result intermediate to the other forms of stimulation. For beads-in, beads-out, and one-time plate stimulated cultures, resistance to infection correlated with down-regulation of CCR5 expression at the cell surface and with increased production of β-chemokines. However, cultures of CD4 T cells continuously passaged on anti-CD3/anti-CD28-coated plates produced large amounts of p24 despite decreased levels of CCR5 expression and increasing production of β-chemokines. Expression of the T-cell activation markers CD25 and CD69 and production of gamma interferon further supported the differences in plate versus bead stimulation. Our results explain the apparent contradiction between the ability of anti-CD28 antibody costimulation to induce resistance to HIV infection when presented on magnetic beads and the increased ability to recover virus from the cells of HIV-positive donors who are on highly active antiretroviral therapy when cells are stimulated by anti-CD3/anti-CD28 immobilized on plastic dishes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference28 articles.

1. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1;Alkhatib G.;Science,1996

2. Differential effects of CD28 co-stimulation on HIV production by CD4+ T cells;Barker E.;J. Immunol.,1998

3. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes;Bleul C. C.;Proc. Natl. Acad. Sci. USA,1997

4. The interleukin-2 T cell system: a new cell growth model;Cantrell D. A.;Science,1984

5. Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+ T cells;Carroll R. G.;Science,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3