Human T-Cell Leukemia Virus Type 2 Rex Protein Increases Stability and Promotes Nuclear to Cytoplasmic Transport of gag/pol and env RNAs

Author:

Kusuhara Koichi1,Anderson Matthew1,Pettiford Sherrie M.1,Green Patrick L.2

Affiliation:

1. Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363,1 and

2. Department of Veterinary Biosciences and Molecular Virology, Immunology, and Medical Genetics, Center for Retrovirus Research, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210-10932

Abstract

ABSTRACT The human T-cell leukemia virus (HTLV) Rex protein is essential for efficient expression of the viral structural and enzymatic gene products. In this study, we assessed the role of the HTLV-2 rex gene in viral RNA expression and Gag protein production. Following transfection of human JM4 T cells with wild-type and rex mutant full-length proviral constructs, PCR was used for semiquantitative analysis of specific viral RNA transcripts. In the presence of Rex, the total amount of steady-state viral RNA was increased fourfold. Rex significantly up-regulated the level of incompletely spliced RNAs by increasing RNA stability and was associated with a twofold down-regulation of the completely spliced tax/rex RNA. PCR analysis of subcellular RNA fractions, isolated from transfected cells, indicated that the level of gag/pol and env cytoplasmic RNAs were increased 7- to 9-fold in the presence of Rex, whereas Gag protein production was increased 130-fold. These data indicate that HTLV-2 Rex increases the stability and promotes nucleus-to-cytoplasm transport of the incompletely spliced viral RNAs, ultimately resulting in increased structural protein production. Moreover, this model system provides a sensitive approach to further characterize HTLV gene expression from full-length proviral clones following transfection of human T cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3