Genetic Dissociation of the Encapsidation and Reverse Transcription Functions in the 5′ R Region of Human Immunodeficiency Virus Type 1

Author:

Clever Jared L.1,Eckstein Daniel A.1,Parslow Tristram G.1

Affiliation:

1. Departments of Pathology and of Microbiology and Immunology, University of California, San Francisco, California 94143

Abstract

ABSTRACT The efficient packaging of genomic RNA into virions of human immunodeficiency virus type 1 (HIV-1) is directed by cis -acting encapsidation signals, which have been mapped to particular RNA stem-loop structures near the 5′ end of the genome. Earlier studies have shown that three such stem-loops, located adjacent to the major 5′ splice donor, are required for optimal packaging; more recent reports further suggest a requirement for the TAR and poly(A) hairpins of the 5′ R region. In the present study, we have compared the phenotypes that result from mutating these latter elements in the HIV-1 provirus. Using a single-round infectivity assay, we find that mutations which disrupt base pairing in either the TAR or poly(A) stems cause profound defects in both packaging and viral replication. Decreased genomic packaging in a given mutant was always accompanied by increased packaging of spliced viral RNAs. Compensatory mutations that restored base pairing also restored encapsidation, indicating that the secondary structures of the TAR and poly(A) stems, rather than their primary sequences, are important for packaging activity. Despite having normal RNA contents, however, viruses with compensatory mutations at the base of the TAR stem were severely replication defective, owing to a defect in proviral DNA synthesis. Our findings thus confirm that the HIV-1 TAR stem-loop is required for at least three essential viral functions (transcriptional activation, RNA packaging, and reverse transcription) and reveal that its packaging and reverse transcription activities can be dissociated genetically by mutations at the base of the TAR stem.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3