Mode of action of copper complexes of some 2,2'-bipyridyl analogs on Paracoccus denitrificans

Author:

Smit H,van der Goot H,Nauta W T,Pijper P J,Balt S,de Bolster M W,Stouthamer A H,Verheul H,Vis R D

Abstract

Copper complexes of 2,2'-bipyridyl and related compounds and CuSO4 inhibited the growth of paracoccus denitrificans. The copper(I) complex of 2,9-dimethyl-1,10-phenanthroline [Cu(DMP)2NO3] showed the highest activity, whereas the copper(II) complex of 1,10-phenanthroline and CuSO4 inhibited the growth to a lesser extent. The uncomplexed ligands (1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline) showed little activity, but in the presence of noninhibitory amounts of CuSO4 this activity increased markedly. Copper ions therefore proved to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. No selective inhibition of deoxyribonucleic acid, ribonucleic acid, or protein synthesis was observed with Cu(DMP)2NO3. Respiratory electron transport of P. denitrificans appeared to be strongly inhibited by Cu(DMP)2NO3 and to a somewhat lesser extent by CuSO4. Both aerobic and anaerobic respirations were inhibited to the same extent, and from the cytochrome redox kinetics it is concluded that the site of this inhibition in the respiratory electron transport chain must be located before cytochrome b. Cu(DMP)2NO3 did not significantly influence the H+/O ratio with whole cells of P. denitrificans, suggesting that the efficiency of oxidative phosphorylation is not affected by CU(DMP)2NO3. Growing cultures of P. denitrificans showed a decrease in intracellular potassium ion content in the presence of increasing amounts of Cu(DMP)2NO3. It is concluded that interference with the cytoplasmic membrane, resulting in inhibition of respiratory electron transport, probably constitutes the main mode of action of copper complexes of 2,2'-bipyridyl analogs on P. denitrificans.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference26 articles.

1. The influence of copper ions on the growth-inhibitory effect of 2,2'-bipyridyl and related compounds on mycoplasmas;Antic B. M.;Eur. J. Med. Chem.,1977

2. The influence of copper ions on the growth-inhibitory effect of 2,2'-bipyridyl and related compounds on mycoplasmas;Antic B. M.;Part II. Eur. J. Med. Chem.,1978

3. The cupric ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts;Cedeno-Maldonado A.;Plant Physiol.,1972

4. 1,10-Phenanthroline-cuprous ion complex, a potent inhibitor of DNA and RNA polymerases;D'Aurora V.;Biochem. Biophys. Res. Commun.,1978

5. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria;De Vries W.;J. Bacteriol.,1968

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3