Hepatitis B Virus X Protein Enhances Cisplatin-Induced Hepatotoxicity via a Mechanism Involving Degradation of Mcl-1

Author:

Hu Liang1,Chen Lei1,Li Liang1,Sun HanYong1,Yang GuangZhen1,Chang YanXin1,Tu QianQian1,Wu MengChao2,Wang HongYang13

Affiliation:

1. International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute

2. Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China

3. State Key Laboratory for Oncogenes and Related Genes, Cancer Institute of Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200032, China

Abstract

ABSTRACT Hepatitis B virus X protein (HBx) is implicated in the pathogenesis of hepatitis B virus (HBV)-associated liver diseases. However, whether HBx has the ability to disturb the susceptibility of hepatocytes to common chemotherapeutic agents remains incompletely understood. Here we demonstrate that HBx enhances cisplatin-induced hepatotoxicity by a mechanism involving degradation of Mcl-1, an antiapoptotic member of the Bcl-2 family. Ectopic expression of HBx sensitized hepatocytes to cisplatin-induced apoptosis, which was accompanied by a marked downregulation of Mcl-1 but not of Bcl-2 or Bcl-xL. Overexpression of Mcl-1 prevented HBx-induced proapoptotic and proinflammatory effects during cisplatin treatment both in vitro and in vivo . HBx-induced dysregulation of Mcl-1 resulted mainly from posttranslational degradation rather than transcription repression. Moreover, a caspase-3 inhibitor effectively abrogated HBx-enhanced Mcl-1 degradation and cell death. Importantly, antioxidants blocked activation of caspase-3 and acceleration of Mcl-1 loss, as well as cell death, in HBx-expressing hepatocytes upon cisplatin exposure in vitro and in vivo . Collectively, these data implicate oxidative stress-dependent caspase-3-mediated degradation of Mcl-1 as a mechanism contributing to HBx-mediated sensitization of cisplatin-induced hepatotoxicity. A combination of cisplatin and antioxidants might provide more advantage than cisplatin alone in the treatment of cancer patients with chronic HBV infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3