Affiliation:
1. Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina
Abstract
ABSTRACT
Staphylococcus aureus
and
Salmonella
spp. are common causes of bone diseases; however, the immune response during such infections is not well understood. Colony-stimulating factors (CSF) have a profound influence on osteoclastogenesis, as well as the development of immune responses following infection. Therefore, we questioned whether interaction of osteoblasts with two very different bacterial pathogens could affect CSF expression by these cells. Cultured mouse and human osteoblasts were exposed to various numbers of
S. aureus
or
Salmonella dublin
bacteria, and a comprehensive analysis of granulocyte-macrophage (GM)-CSF, granulocyte (G)-CSF, macrophage (M)-CSF, and interleukin-3 (IL-3) mRNA expression and cytokine secretion was performed. Expression of M-CSF and IL-3 mRNAs by mouse osteoblasts was constitutive and did not increase significantly following bacterial exposure. In contrast, GM-CSF and G-CSF mRNA expression by mouse osteoblasts was dramatically upregulated following interaction with either viable
S. aureus
or
Salmonella
. This increased mRNA expression also translated into high levels of GM-CSF and G-CSF secretion by mouse and human osteoblasts following bacterial exposure. Viable
S. aureus
and
Salmonella
induced maximal levels of CSF mRNA expression and cytokine secretion compared to UV-killed bacteria. Furthermore, GM-CSF and G-CSF mRNA expression could be induced in unexposed osteoblasts separated by a permeable Transwell membrane from bacterially exposed osteoblasts. M-CSF secretion was increased in cultures of exposed human osteoblasts but not in exposed mouse osteoblast cultures. Together, these studies are the first to define CSF expression and suggest that, following bacterial exposure, osteoblasts may influence osteoclastogenesis, as well as the development of an immune response, via the production of these cytokines.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献