Conversion of Methionine to Thiols by Lactococci, Lactobacilli, and Brevibacteria

Author:

Dias Benjamin1,Weimer Bart1

Affiliation:

1. Western Dairy Center, Department of Nutrition and Food Sciences, Utah State University, Logan, Utah 84322-8700

Abstract

ABSTRACT Methanethiol has been strongly associated with desirable Cheddar cheese flavor and can be formed from the degradation of methionine (Met) via a number of microbial enzymes. Methionine γ-lyase is thought to play a major role in the catabolism of Met and generation of methanethiol in several species of bacteria. Other enzymes that have been reported to be capable of producing methanethiol from Met in lactic acid bacteria include cystathionine β-lyase and cystathionine γ-lyase. The objective of this study was to determine the production, stability, and activities of the enzymes involved in methanethiol generation in bacteria associated with cheese making. Lactococci and lactobacilli were observed to contain high levels of enzymes that acted primarily on cystathionine. Enzyme activity was dependent on the concentration of sulfur amino acids in the growth medium. Met aminotransferase activity was detected in all of the lactic acid bacteria tested and α-ketoglutarate was used as the amino group acceptor. In Lactococcus lactis subsp. cremoris S2, Met aminotransferase was repressed with increasing concentrations of Met in the growth medium. While no Met aminotransferase activity was detected in Brevibacterium linens BL2, it possessed high levels of l -methionine γ-lyase that was induced by addition of Met to the growth medium. Met demethiolation activity at pH 5.2 with 4% NaCl was not detected in cell extracts but was detected in whole cells. These data suggest that Met degradation in Cheddar cheese will depend on the organism used in production, the amount of enzyme released during aging, and the amount of Met in the matrix.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3