A fully 5'-CG-3' but not a 5'-CCGG-3' methylated late frog virus 3 promoter retains activity

Author:

Munnes M1,Schetter C1,Hölker I1,Doerfler W1

Affiliation:

1. Institut für Genetik, Universität zu Köln, Germany.

Abstract

Several lines of evidence demonstrate that the DNA of the iridovirus frog virus 3 (FV3) is methylated in all 5'-CG-3' sequences both in virion DNA and in the intracellular viral DNA at late times after infection. The 5-methyldeoxycytidine residues in this viral DNA occur exclusively in 5'-CG-3' dinucleotide positions. We have cloned and determined the nucleotide sequence of the L1140 gene and its promoter from FV3 DNA. The gene encodes a 40-kDa protein. The results of transcriptional pattern analyses for this gene in fathead minnow fish cells document that this gene is transcribed exclusively late after FV3 infection. The L1140 gene and its promoter are fully methylated at late times after infection. We have been interested in resolving the apparent paradox that the methylated L1140 promoter is methylated and active late in FV3-infected cells. Of course, the possibility cannot be excluded that one or a few 5'-CG-3' sequences outside restriction endonuclease sites escaped de novo methylation after FV3 DNA replication. We have devised a construct that places the chloramphenicol acetyltransferase gene under the control of the L1140 promoter. Upon transfection, this construct exhibits activity only in FV3-infected BHK-21 hamster cells, not in uninfected BHK-21 cells. The fully 5'-CG-3' or 5'-GCGC-3' (HhaI) methylated, HpaII-mock-methylated, or unmethylated L1140 promoter-chloramphenicol acetyltransferase gene construct is active in FV3-infected BHK-21 cells, whereas the same construct 5'-CCGG-3' (HpaII) methylated has lost activity. Apparently, complete methylation of the late L1140 promoter in FV3 DNA is compatible with activity. However, a very specific 5'-CCGG-3' methylation pattern that does not naturally occur in authentic FV3 DNA in infected cells abrogates promoter function. These results further support the notion that very specific patterns of methylation are required to inhibit or inactivate viral promoters.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3