Silver Coordination Polymers for Prevention of Implant Infection: Thiol Interaction, Impact on Respiratory Chain Enzymes, and Hydroxyl Radical Induction

Author:

Gordon Oliver1,Vig Slenters Tünde2,Brunetto Priscilla S.2,Villaruz Amer E.3,Sturdevant Daniel E.4,Otto Michael3,Landmann Regine1,Fromm Katharina M.2

Affiliation:

1. Infection Biology, Department of Biomedicine, University Hospital, CH-4056 Basel, Switzerland

2. University of Fribourg, Department of Chemistry, Chemin du Musée 9, CH-1700 Fribourg, Switzerland

3. National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda, Maryland 20892

4. Research Technologies Branch, Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 903 South 4th Street, Hamilton, Montana 59840

Abstract

ABSTRACT Prosthetic joint replacements are used increasingly to alleviate pain and improve mobility of the progressively older and more obese population. Implant infection occurs in about 5% of patients and entails significant morbidity and high social costs. It is most often caused by staphylococci, which are introduced perioperatively. They are a source of prolonged seeding and difficult to treat due to antibiotic resistance; therefore, infection prevention by prosthesis coating with nonantibiotic-type anti-infective substances is indicated. A renewed interest in topically used silver has fostered development of silver nanoparticles, which, however, present a potential health hazard. Here we present new silver coordination polymer networks with tailored physical and chemical properties as nanostructured coatings on metallic implant substrates. These compounds exhibited strong biofilm sugar-independent bactericidal activity on in vitro -grown biofilms and prevented murine S taphylococcus epidermidis implant infection in vivo with slow release of silver ions and limited transient leukocyte cytotoxicity. Furthermore, we describe the biochemical and molecular mechanisms of silver ion action by gene screening and by targeting cell metabolism of S. epidermidis at different levels. We demonstrate that silver ions inactivate enzymes by binding sulfhydryl (thiol) groups in amino acids and promote the release of iron with subsequent hydroxyl radical formation by an indirect mechanism likely mediated by reactive oxygen species. This is the first report investigating the global metabolic effects of silver in the context of a therapeutic application. We anticipate that the compounds presented here open a new treatment field with a high medical impact.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 350 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3