DNA-binding domain of the RepE initiator protein of mini-F plasmid: involvement of the carboxyl-terminal region

Author:

Matsunaga F1,Kawasaki Y1,Ishiai M1,Nishikawa K1,Yura T1,Wada C1

Affiliation:

1. Institute for Virus Research, Kyoto University, Japan.

Abstract

The RepE initiator protein (251 residues) is essential for mini-F replication in Escherichia coli and exhibits two major functions: initiation of DNA replication from ori2 and autogenous repression of repE transcription. Whereas the initiation is mediated by RepE monomers that bind to the ori2 iterons (direct repeats), the autogenous repression is mediated by dimers that bind to the repE operator, which contains an inverted repeat sequence related to the iterons. We now report that the binding of RepE to these DNA sites is primarily determined by the C-terminal region of this protein. The mutant RepE proteins lacking either the N-terminal 33 (or more) residues or the C-terminal 7 (or more) residues were first shown to be defective in binding to both the ori2 and the operator DNAs. However, direct screening and analysis of mutant RepEs which are specifically affected in binding to the ori2 iterons revealed that the mutations (mostly amino acid substitutions) occur exclusively in the C-terminal region (residues 168 to 242). These mutant proteins exhibited reduced binding to ori2 and no detectable binding to the operator. Thus, whereas truncation of either end of RepE can destroy the DNA-binding activities, the C-terminal region appears to represent a primary DNA-binding domain of RepE for both ori2 and the operator. Analogous DNA-binding domains seem to be conserved among the initiator proteins of certain related plasmids.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3