Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum

Author:

Gerischer U1,Dürre P1

Affiliation:

1. Institut für Mikrobiologie, Universität Göttingen, Federal Republic of Germany.

Abstract

Acetoacetate decarboxylase (ADC) (EC4.1.1.4) of Clostridium acetobutylicum DSM 792 was purified to homogeneity, and its first 25 N-terminal amino acids were determined. Oligonucleotide probes deduced from this sequence were used to detect positive clones in partial gene banks derived from Sau3A and HaeIII digests with following ligation into the vector pUC9. In Escherichia coli, the 2.1-kbp HaeIII clones expressed high levels of ADC activity. The expression was independent of the orientation of the insert with respect to the lac promoter of the vector and also of the addition of isopropyl-beta-D-thiogalactopyranoside, thus indicating that sequences located on the clostridial DNA controlled transcription and translation. From the E. coli clone with the recombinant plasmid pUG93 containing the 2.1-kbp HaeIII fragment, the ADC protein was purified and compared with the native enzyme. Both were indistinguishable with respect to the molecular mass of subunits and native protein as well as to activity stain. The 2.9-kbp Sau3A fragment could be shown to contain the amino terminus of the acetoacetate decarboxylase (adc) gene but did not express enzyme activity. It partially overlapped with the HaeIII fragment, spanning together 4,053 bp of the clostridial genome that were completely sequenced. Four open reading frames (ORFs) could be detected, one of which was unambiguously assigned to the acetoacetate decarboxylase (adc) gene. Amino acid sequences of the N terminus and the catalytic center as deduced from the nucleotide sequence were identical to sequences obtained from direct analysis of the protein. Typical procaryotic transcriptional and translational start and stop signals could be found in the DNA sequence. Together with these regulatory sequences, the adc gene formed a single operon. The carboxyl terminus of the enzyme proved to be rather hydrophobic. In vitro transcription-translation assays resulted in formation of ADC and ORF3 gene product; the other two ORFs were not expressed. Whereas no homology of the adc gene and ORF2 could be detected with sequences available in the EMBL or GenBank data bases, the obviously truncated ORF1 showed significant similarity to alpha-amylase of Bacillus subtilis. The restriction pattern and N-terminal amino acid sequence (as deduced from the nucleotide sequence) of ORF3 proved to be identical to those of the large subunit of acetoacetyl coenzyme A:acetate/butyrate:coenzyme A transferase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference47 articles.

1. Level of enzymes involved in acetate, butyrate, acetone and butanol fermentation by Clostridium acetobutylicum;Andersch W.;Eur. J. Appl. Microbiol. Biotechnol.,1983

2. Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum in continuous culture;Bahl H.;Eur. J. Appl. Microbiol. Biotechnol.,1982

3. Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat;Bahl H.;Eur. J. Appl. Microbiol. Biotechnol.,1982

4. Bahl H. and G. Gottschalk. 1988. Microbial production of butanol/acetone p. 1-30. In H. J. Rehm and G. Reed (ed.) Biotechnology vol. 6b. VCH Verlagsgesellschaft mbH Weinheim Federal Republic of Germany.

5. Induction of acetoacetate decarboxylase in Clostridium acetobutylicum;Ballongue J.;FEMS Microbiol. Lett.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3