Heat shock response of murine Chlamydia trachomatis

Author:

Engel J N1,Pollack J1,Perara E1,Ganem D1

Affiliation:

1. Department of Microbiology and Immunology, University of California Medical Center, San Francisco 94143.

Abstract

We have investigated the heat shock response in the mouse pneumonitis strain of Chlamydia trachomatis. The kinetics of the chlamydial heat shock response resembled that of other procaryotes: the induction was rapid, occurring over a 5- to 10-min time period, and was regulated at the level of transcription. Immunoblot analysis and immunoprecipitations with heterologous antisera to the heat shock proteins DnaK and GroEL demonstrated that the rate of synthesis, but not the absolute amount of these two proteins, increased after heat shock. Using a general screen for genes whose mRNAs are induced by heat shock, we identified and cloned two of these. DNA sequence analysis demonstrated that one of the genes is a homolog of dnaK. Further sequence analysis of the region upstream of the dnaK gene revealed that the chlamydial homolog of the grpE gene is located just adjacent to the dnaK gene. The second locus encoded three potential nonoverlapping open reading frames. One of the open reading frames was 52% homologous to the ribosomal protein S18 of Escherichia coli and thus presumably encodes the chlamydial homolog. Interestingly, this ribosomal protein is not known to be induced by heat shock in E. coli. S1 nuclease and primer extension analyses located the start site of the dnaK transcript to the last nucleotide of the grpE coding sequence, suggesting that these two genes, although tandemly arranged, are transcribed separately. No promoter sequences resembling the E. coli consensus heat shock promoter could be identified upstream of either the C. trachomatis dnaK, grpE, or S18 gene. The induction of the dnaK and S18 mRNAs by heat shock occurred at a transcriptional level; their induction could be blocked by rifampin. The mechanisms of induction for these two loci were not the same, however; they were differentially sensitive to chloramphenicol. Whereas the induction of dnaK mRNA required de novo protein synthesis, the induction of the S18 mRNA did not. Thus, C. trachomatis utilizes at least two different pathways to induce the transcription of mRNAs encoding proteins induced in the heat shock response.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3