Cu,Zn superoxide dismutase and copper deprivation and toxicity in Saccharomyces cerevisiae

Author:

Greco M A1,Hrab D I1,Magner W1,Kosman D J1

Affiliation:

1. Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14214.

Abstract

A wild-type strain of the yeast Saccharomyces cerevisiae grown at a medium [Cu] of less than or equal to 50 nM contained less Cu,Zn superoxide dismutase (SOD) mRNA (60%), protein (50%), and activity (50%) in comparison with control cultures grown in normal synthetic dextrose medium ([Cu] approximately 150 nM). A compensating increase in the activity of MnSOD was observed, as well as a smaller increase in MnSOD mRNA. These medium [Cu]-dependent differences were observed in cultures under N2 as well. Addition of Cu2+ (100 microM) to Cu-depleted cultures resulted in a rapid (30 min) increase in Cu,ZnSOD mRNA (2.5-fold), protein (3.5-fold), and activity (4-fold). Ethidium bromide (200 micrograms/ml of culture) inhibited by 50% the increase in Cu,ZnSOD mRNA, while cycloheximide (100 micrograms/ml of culture) inhibited completely the increase in protein and activity. Addition of Cu2+ to greater than or equal to 100 microM caused no further increase in these parameters but did result in a loss of total cellular RNA and translatable RNA, a decline in the population of specific mRNAs, a decrease in total soluble protein and the activity of specific enzymes, and an inhibition of incorporation of [3H]uracil and [3H]leucine into trichloroacetic acid-insoluble material. Cu,ZnSOD mRNA, protein, and activity appeared relatively more resistant to these effects of Cu toxicity than did the other cellular constituents examined. When evaluated in cultures under N2, the cellular response to [Cu] of greater than or equal to 100 microM was limited to the inhibition of radiolabel incorporation into trichloroacetic acid-insoluble material. All other effects were absent in the absence of O2. The data indicated that medium (cellular) Cu alters the steady-state level of Cu, ZnSOD. This regulation may be at the level of transcription. In addition, Cu,ZnSOD exhibits the characteristics of Cu-stress protein in that it and its mRNA are enhanced relative to other cellular species under conditions of Cu excess. This observation and the O2-dependence of some of the manifestations of Cu excess suggest that one mechanism of Cu toxicity involves the superoxide radical anion O2-.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3