Mutational analysis of the 18-base-pair inverted repeat element at the bovine papillomavirus origin of replication: identification of critical sequences for E1 binding and in vivo replication

Author:

Holt S E1,Wilson V G1

Affiliation:

1. Department of Medical Microbiology and Immunology, Texas A&M University Health Science Center, College Station 77843-1114, USA.

Abstract

Replication of bovine papillomavirus requires two viral proteins, E1 and E2-TA. Previously we demonstrated that sequences within an imperfect 18-bp inverted repeat (IR) element were sufficient to confer specific binding of the E1 protein to the origin region (S. E. Holt, G. Schuller, and V. G. Wilson, J. Virol. 68:1094-1102, 1994). To identify critical nucleotides for E1 binding and origin function, a series of individual point mutations was constructed at each nucleotide position in the 18-bp IR. Binding of E1 to these point mutations established that both the position of the mutation and the specific nucleotide change were important for the E1-DNA interaction. Equivalent mutations from each half of the IR exhibited similar binding, suggesting that the halves were functionally symmetric for E1 interactions. Each of these mutations was evaluated also for origin function in vivo by a transient-replication assay. No single point mutation eliminated replication capacity completely, though many mutants were severely impaired, demonstrating an important functional contribution for the E1 binding site. Furthermore, E1 binding was not sufficient for replication, as several origin mutants bound E1 well in vitro but replicated poorly in vivo. This suggests that certain nucleotides within the 18-bp IR may be involved in postbinding events necessary for replication initiation. The results with the point mutations suggest that E1-E1 interactions are important for stable complex formation and also indicate that there is some flexibility with regard to formation of a functional E1 replication complex at the origin.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3