An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1

Author:

Yao F1,Schaffer P A1

Affiliation:

1. Division of Molecular Genetics, Dana-Faber Cancer Institute.

Abstract

Among the five immediate-early regulatory proteins of herpes simplex virus (HSV) type 1, only ICP0 is capable of activating all kinetic classes of viral genes. Consistent with its broad transactivating activity, ICP0 plays a major role in enhancing the reactivation of HSV from latency both in vivo and in vitro. Although not essential for viral replication, ICP0 confers a significant growth advantage on the virus, especially at low multiplicities of infection. In this report we describe the expression of a novel activity by the osteosarcoma cell line U2OS that can substitute functionally for ICP0. Compared with Vero cells, both U2OS cells and cells of the ICP0-expressing line 0-28 significantly enhanced the plating efficiency of an ICP0 null mutant, 7134. In contrast, the plating efficiencies of the wild-type virus in all three cell types were similar. Single-step growth experiments demonstrated that the yield of 7134 in U2OS cells was severalfold higher than that in 0-28 cells and about 100-fold higher than that in Vero cells. In order to identify the viral genes whose expression is enhanced by the activity in U2OS cells, levels of expression of selected viral proteins in extracts of Vero and U2OS cells were compared by Western blot (immunoblot) analysis following low-multiplicity infection. At a multiplicity of 0.1 PFU per cell, the levels of expression of the immediate-early protein ICP4 and the early protein gD in 7134-infected U2OS cells were significantly higher than those in 7134-infected Vero cells. When infections were carried out at a multiplicity of 1 PFU per cell, however, no major differences in the levels of expression of these proteins in U2OS and Vero cells were observed. Cycloheximide reversal experiments demonstrated that the cellular activity expressed in U2OS cells that promotes high-level expression of ICP4 is not synthesized de novo but appears to exist as a preformed protein(s). To confirm this observation and to determine whether, like immediate-early genes, early, delayed-early, and late viral genes are also responsive to the cellular activity, transient-expression assays were performed. The results of these tests demonstrated that basal levels of expression from immediate-early, early, and delayed-early promoters, but not that from a late promoter, were significantly higher in U2OS cells than in Vero cells and that this enhancement occurred in the absence of viral proteins.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference74 articles.

1. A rapid micropreparation technique for extraction of DNA binding proteins from limiting numbers of mammalian cells;Andrews N. C.;Nucleic Acids Res.,1991

2. Astor T. L. S. A. Rundle C. L. Bogard W. Cai and P. A. Schaffer. Unpublished data.

3. Suppression of human colorectal carcinoma cell growth by wild-type p53;Baker S. J.;Science,1990

4. Benjamin T. and P. K. Vogt. 1990. Cell transformation by viruses p. 317-368. In B. N. Fields and D. M. Knipe (ed.) Virology 2nd ed. Raven Press New York.

5. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene;Bookstein R.;Science,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3