Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells

Author:

Baum C1,Hegewisch-Becker S1,Eckert H G1,Stocking C1,Ostertag W1

Affiliation:

1. Abteilung Zell-und Virusgenetik, Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Germany.

Abstract

We present data that retroviral gene expression in early hematopoietic cells is subjected to transcriptional controls similar to those previously described for embryonic stem cells. Transient transfection experiments revealed that both the viral enhancer region in the U3 region of the long terminal repeat as well as a repressor element coincident with the primer binding site of Moloney leukemia viruses are limiting for expression in hematopoietic cells in a differentiation-dependent manner. Within the group of Moloney leukemia virus-related viruses, only the myeloproliferative sarcoma virus showed high enhancer activity in myeloid (including erythroid) cells. In contrast, enhancer regions related to the Friend mink cell focus-forming viruses mediate much higher gene expression levels in both multipotent and lineage-committed myeloid cells. In addition, transcriptional repression related to sequences in the primer binding site of Moloney leukemia virus-derived vectors is also found in early hematopoietic cells and can be overcome by using the corresponding sequences of the murine embryonic stem cell virus. On the basis of these results, two types of novel retroviral hybrid vectors were developed; they combine the U3 regions of either the Friend mink cell focus-forming virus family or the myeloproliferative sarcoma virus with the primer binding site of the murine embryonic stem cell virus. When used to express the human multiple drug resistance gene, these vectors substantially improve protection to cytostatic drugs in transduced hematopoietic cell lines FDC-Pmix, TF-1, and K-562 in comparison with Moloney leukemia virus-derived vectors presently used for the stem cell protection approach in somatic gene therapy.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3