Role of the virion host shutoff (vhs) of herpes simplex virus type 1 in latency and pathogenesis

Author:

Strelow L I1,Leib D A1

Affiliation:

1. Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

The herpes simplex virus type 1 (HSV-1) UL41 gene product, virion host shutoff (vhs), has homologs among five alphaherpesviruses (HSV-1, HSV-2, pseudorabies virus, varicella-zoster virus, and equine herpesvirus 1), suggesting a role for this protein in neurotropism. A mutant virus, termed UL41NHB, which carries a nonsense linker in the UL41 open reading frame at amino acid position 238 was generated. UL41NHB and a marker-rescued virus, UL41NHB-R, were characterized in vitro and tested for their ability to replicate in vitro and in vivo and to establish and reactivate from latency in a mouse eye model. As demonstrated by Western blotting (immunoblotting) and Northern (RNA) blotting procedures, UL41NHB encodes an appropriately truncated vhs protein and, as expected for a vhs null mutant, fails to induce the degradation of cellular glyceraldehyde-3-phosphate dehydrogenase mRNA. The growth of UL41NHB was not significantly altered in one-step growth curves in Vero or mouse C3H/10T1/2 cells but was impaired in corneas, in trigeminal ganglia, and in brains of mice compared with the growth of KOS and UL41NHB-R. As a measure of establishment of latency, quantitative DNA PCR showed that the amount of viral DNA within trigeminal ganglia latently infected with UL41NHB was reduced by approximately 30-fold compared with that in KOS-infected ganglia and by 50-fold compared with that in UL41NHB-R-infected ganglia. Explant cocultivation studies revealed a low reactivation frequency for UL41NHB (1 of 28 ganglia, or 4%) compared with that for KOS (56 of 76, or 74%) or UL41NHB-R (13 of 20 or 65%). Taken together, these results demonstrate that vhs represents a determinant of viral pathogenesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3