Functions of the internal pre-S domain of the large surface protein in hepatitis B virus particle morphogenesis

Author:

Bruss V1,Vieluf K1

Affiliation:

1. Department of Medical Microbiology, University of Göttingen, Germany.

Abstract

The large hepatitis B virus (HBV) surface protein (L) forms two isomers which display their N-terminal pre-S domain at the internal and external side of the viral envelope, respectively. The external pre-S domain has been implicated in binding to a virus receptor. To investigate functions of the internal pre-S domain, a secretion signal sequence was fused to the N terminus of L (sigL), causing exclusive expression of external pre-S domains. A fusion construct with a nonfunctional signal (s25L), which corresponds in its primary sequence to sigL cleaved by signal peptidase, was used as a control. SigL was N glycosylated in transfected COS cells at both potential sites in pre-S in contrast to s25L or wild-type L, confirming the expected transmembrane topologies of sigL and s25L. Phenotypic characterization revealed the following points. (i) SigL lost the inhibitory effect of L or s25L on secretion of subviral hepatitis B surface antigen particles, suggesting that the retention signal mapped to the N terminus of L is recognized in the cytosol and not in the lumen of the endoplasmic reticulum. (ii) SigL was secreted into the culture medium even in the absence of the major HBV surface protein (S), while release of an L mutant lacking the retention signal was still dependent on S coexpression. (iii) s25L but not sigL could complement an L-negative HBV genome defective for virion secretion in cotransfections. This suggests that the cytosolic pre-S domain, like a matrix protein, is involved in the interaction of the viral envelope with preformed cytosolic nucleocapsids during virion assembly.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3