Human T-lymphotropic virus type 1 peptides in chimeric and multivalent constructs with promiscuous T-cell epitopes enhance immunogenicity and overcome genetic restriction

Author:

Lairmore M D1,DiGeorge A M1,Conrad S F1,Trevino A V1,Lal R B1,Kaumaya P T1

Affiliation:

1. Center For Retrovirus Research, College of Veterinary Medicine, Ohio State University, Columbus 43210, USA.

Abstract

Conventional strategies of viral peptide immunizations often elicit low-affinity antibody responses and have limited ability to elicit immune responses in outbred animals of diverse major histocompatibility (MHC) haplotypes. This genetically restricted T-cell-stimulatory activity of peptides is a serious obstacle to vaccine design. However, the use of promiscuous T-cell epitopes may circumvent this problem. Promiscuous T-cell epitopes from tetanus toxin (amino acids [aa] 580 to 599) and the measles virus F protein (aa 288 to 302) that bind to several isotypic and allotypic forms of human MHC class II molecules have been identified and have been used in highly immunogenic constructs to overcome haplotype-restricted immune responses. Chimeric and beta-template peptide constructs incorporating known human T-lymphotropic virus type 1 (HTLV-1) B- and T-cell epitopes from the surface envelope protein gp46 (SP2 [aa 86 to 107] and SP4a [aa 190 to 209]) and promiscuous T-cell peptides were synthesized, and their immunogenicities were evaluated in both rabbits and mouse strains of divergent haplotypes (C3H/HeJ [H-2k], C57BL/6 [H-2b], and BALB/c [H-2d]). In addition, peptide preparations were structurally characterized by analytical high-performance liquid chromatography, mass spectrometry, and circular dichroism. In contrast to their linear forms, the chimeric constructs of both the SP2 and SP4a epitopes displayed alpha-helical secondary structures. Immunogenicity of the peptide constructs was evaluated by direct and competitive enzyme-linked immunosorbant assay (ELISA), as well as by radioimmunoprecipitation, syncytium inhibition, and antigen-induced lymphocyte proliferation assays. Immunization with the SP4a peptide without conjugation to a carrier protein produced antibodies specific for SP4a in two mouse strains (C3H/HeJ and C57BL/6). However, BALB/c mice failed to respond to the peptide, indicating that the T-cell epitope of the SP4a sequence is MHC restricted. In contrast, the chimeric constructs MVF-SP2 and SP4a-measles virus F protein were highly immunogenic, producing elevated ELISA titers after only two immunizations. Elicited antibodies recognized native forms of gp46 in ELISAs and radioimmunoprecipitation assays, as well as inhibited HTLV-1-mediated syncytium formation. In addition, chimeric constructs were effective at induction of lymphocyte proliferation to the T-cell epitope, SP4a, in each strain of immunized mice. Our data demonstrate that the antibody response to retroviral peptides is enhanced by promiscuous peptide constructs, in part because of the ability of such constructs to promote appropriate secondary structural forms of viral epitopes. In addition, these constructs promote virus-specific helper T-cell responses, thereby overcoming genetically restricted immune responses to the synthetic peptides.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference56 articles.

1. Antigen processing at the molecular level;Allen P. M.;Immunol. Today,1987

2. Three-dimensional structure of an antigen-antibody complex at 2.8 Å resolution;Amit A.;Science,1986

3. A peptide-based human T cell leukemia virus type I vaccine containing T and B cell epitopes that induces high titers of neutralizing antibodies;Baba E.;J. Immunol.,1995

4. Multiple neutralizing B-cell epitopes of human T-cell leukemia virus type 1 (HTLV-1) identified by human monoclonal antibodies: a basis for the design of an HTLV-1 peptide vaccine;Baba E.;J. Immunol.,1993

5. Binding of immunogenic peptides to Ia histocompatibility molecules;Babbit B.;Nature (London),1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3