The baculovirus transactivator IE1 binds to viral enhancer elements in the absence of insect cell factors

Author:

Choi J1,Guarino L A1

Affiliation:

1. Department of Biology, Texas A&M University, College Station 77843-2128, USA.

Abstract

The transregulatory IE1 protein of Autographa californica nuclear polyhedrosis virus binds to the viral enhancer element hr5. To test whether IE1 binds independently of host cell factors, IE1 was translated in rabbit reticulocyte extracts and tested for DNA binding activity by an electrophoretic mobility shift assay. Complexes with the hr5 probe were detected with translation reaction mixtures primed with ie1 RNA but not with control translation reaction mixtures. However, the DNA-protein complexes formed with IE1 translated in vitro migrated more slowly than complexes formed with IE1 that was transiently expressed in insect cells. Phosphatase treatment of the translation reactions resulted in an increase in the mobility of the DNA-protein complexes, suggesting that hyperphosphorylation was responsible for the altered migration. To further verify that IE1 was capable of binding DNA in the absence of host cell factors, an N-terminal truncation of IE1 was synthesized in vitro, and shown to interact with hr5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of IE1 translated in vitro revealed that the mobility of the protein was heterogeneous. This pattern was altered by translation in the presence of an oligonucleotide corresponding to the IE1 specific binding site but was not affected by translation in the presence of a nonspecific DNA. These results suggest that binding of IE1 to DNA causes a conformational change in the protein that alters the accessibility of IE1 to protein kinases.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3