Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell

Author:

Schwartz O1,Maréchal V1,Danos O1,Heard J M1

Affiliation:

1. Laboratoire Rétrovirus et Transfert Génétique, Institut Pasteur, Paris, France.

Abstract

We have analyzed the replication of Nef+ and Nef- isogenic human immunodeficiency virus in CEM, HUT78, MT4 lymphoid, and U937 monocytic cell lines. At each passage of infected cells, we have assessed the relative infectivity of the virus particles released in culture media by measuring the number of infections units per nanogram of p24 protein. Values appeared to be 3- to 10-fold higher for the Nef+ virus than for the Nef- number The positive effect of Nef was observed regardless of the cell line, the multiplicity of infection, and the number of virus replication cycles achieved. We showed, by using cells expressing glycosylphosphatidylinositol-linked CD4, that the enhancement of virion infectivity could be dissociated from the down-regulation of cell surface CD4 also induced by Nef. The gp120-to-p24 ratio and the RNA content of virus particles produced in the presence or in the absence of Nef were equivalent. Virions bound to cell surface CD4 receptors with equal efficiencies. Equivalent reverse transcriptase activities were measured both on exogenous substrate and on particle genomic RNAs. In contrast, reverse transcription in infected cells generated 5- to 10-fold less DNA when the virions were produced in the absence of Nef, indicating that these particles performed reverse transcription in a suboptimal environment. These data suggest that the expression of Nef in virus-producing cells is required for efficient processing of the early stages of virus replication in target cells, including the internalization in an appropriate cell compartment and the uncoating of the particle.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3