The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particles

Author:

Kinchington P R1,Bookey D1,Turse S E1

Affiliation:

1. Department of Ophthalmology, University of Pittsburgh, Pennsylvania 15213, USA.

Abstract

Of the five varicella-zoster virus (VZV) open reading frames (ORFs) known to encode proteins which influence viral transcriptional events, two (ORFs 10 and 62) encode proteins associated with the tegument of virus particles, where they may function during the immediate-early events of infection. In this study, antibodies which recognize the products of the three additional VZV ORFs, ORFs 4, 61, and 63, were made and used to characterize their association with virus particles. ORF 4 encoded a 52-kDa polypeptide, and antibodies to ORF 63 reacted with polypeptides of 47 and 28 kDa. Antibodies to ORF 61 recognized heterogeneous polypeptides of 62 to 66 kDa in cells infected with a vaccinia virus recombinant expressing ORF 61 and in VZV-infected melanoma cells but reacted very weakly with polypeptides of VZV-infected human foreskin fibroblasts, suggesting that cell-specific factors were involved in ORF 61 protein accumulation. Analysis of virus particles purified from melanoma cells indicated that a 52-kDa polypeptide from ORF 4 and the 47-kDa polypeptide from ORF 63, but not any from ORF 61, were associated with virus particles. The virion proteins were likely components of the tegument, as they were not solubilized by treatment of virus with mild detergents and were completely resistant to trypsin digestion unless prior envelope solubilization was performed. The products of ORFs 4 and 63 were not found in purified VZV nucleocapsids. These results suggest that forms of the ORF 4- and ORF 63-encoded transcriptional regulatory proteins are also structural and may also have roles in the immediate-early events of infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3