Optimization of Methanotrophic Growth and Production of Poly(3-Hydroxybutyrate) in a High-Throughput Microbioreactor System

Author:

Sundstrom Eric R.1,Criddle Craig S.1

Affiliation:

1. Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA

Abstract

ABSTRACT Production of poly(3-hydroxybutyrate) (P3HB) from methane has economic and environmental advantages over production by agricultural feedstock. Identification of high-productivity strains and optimal growth conditions is critical to efficient conversion of methane to polymer. Current culture conditions, including serum bottles, shake flasks, and agar plates, are labor-intensive and therefore insufficient for systematic screening and isolation. Gas chromatography, the standard method for analysis of P3HB content in bacterial biomass, is also incompatible with high-throughput screening. Growth in aerated microtiter plates coupled with a 96-well Nile red flow-cytometric assay creates an integrated microbioreactor system for high-throughput growth and analysis of P3HB-producing methanotrophic cultures, eliminating the need for individual manipulation of experimental replicates. This system was tested in practice to conduct medium optimization for P3HB production in pure cultures of Methylocystis parvus OBBP. Optimization gave insight into unexpected interactions: for example, low calcium concentrations significantly enhanced P3HB production under nitrogen-limited conditions. Optimization of calcium and copper concentrations in the growth medium increased final P3HB content from 18.1% to 49.4% and P3HB concentration from 0.69 g/liter to 3.43 g/liter while reducing doubling time from 10.6 h to 8.6 h. The ability to culture and analyze thousands of replicates with high mass transfer in completely mixed culture promises to streamline medium optimization and allow the detection and isolation of highly productive strains. Applications for this system are numerous, encompassing analysis of biofuels and other lipid inclusions, as well as analysis of heterotrophic and photosynthetic systems.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3