Severe Acute Respiratory Syndrome Coronavirus nsp9 Dimerization Is Essential for Efficient Viral Growth

Author:

Miknis Zachary J.1,Donaldson Eric F.2,Umland Timothy C.13,Rimmer Ryan A.3,Baric Ralph S.2,Schultz L. Wayne13

Affiliation:

1. Department of Structural Biology, State University of New York at Buffalo, Buffalo, New York 14203

2. Department of Microbiology and Immunology, University of North Carolina at Chapel-Hill, Chapel-Hill, North Carolina 27599

3. Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203

Abstract

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) devotes a significant portion of its genome to producing nonstructural proteins required for viral replication. SARS-CoV nonstructural protein 9 (nsp9) was identified as an essential protein with RNA/DNA-binding activity, and yet its biological function within the replication complex remains unknown. Nsp9 forms a dimer through the interaction of parallel α-helices containing the protein-protein interaction motif GXXXG. In order to study the role of the nsp9 dimer in viral reproduction, residues G100 and G104 at the helix interface were targeted for mutation. Multi-angle light scattering measurements indicated that G100E, G104E, and G104V mutants are monomeric in solution, thereby disrupting the dimer. However, electrophoretic mobility assays revealed that the mutants bound RNA with similar affinity. Further experiments using fluorescence anisotropy showed a 10-fold reduction in RNA binding in the G100E and G104E mutants, whereas the G104V mutant had only a 4-fold reduction. The structure of G104E nsp9 was determined to 2.6-Å resolution, revealing significant changes at the dimer interface. The nsp9 mutations were introduced into SARS-CoV using a reverse genetics approach, and the G100E and G104E mutations were found to be lethal to the virus. The G104V mutant produced highly debilitated virus and eventually reverted back to the wild-type protein sequence through a codon transversion. Together, these data indicate that dimerization of SARS-CoV nsp9 at the GXXXG motif is not critical for RNA binding but is necessary for viral replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3