Long-Term Immunity to Trypanosoma cruzi in the Absence of Immunodominant trans -Sialidase-Specific CD8 + T Cells

Author:

Rosenberg Charles S.12,Zhang Weibo12,Bustamante Juan M.1,Tarleton Rick L.13

Affiliation:

1. Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA

2. Department of Microbiology, University of Georgia, Athens, Georgia, USA

3. Department of Cellular Biology, University of Georgia, Athens, Georgia, USA

Abstract

ABSTRACT Trypanosoma cruzi infection drives the expansion of remarkably focused CD8 + T cell responses targeting epitopes encoded by variant trans -sialidase (TS) genes. Infection of C57BL/6 mice with T. cruzi results in up to 40% of all CD8 + T cells committed to recognition of the dominant TSKB20 and subdominant TSKB18 TS epitopes. However, despite this enormous response, these mice fail to clear T. cruzi infection and subsequently develop chronic disease. One possible reason for the failure to cure T. cruzi infection is that immunodomination by these TS-specific T cells may interfere with alternative CD8 + T cell responses more capable of complete parasite elimination. To address this possibility, we created transgenic mice that are centrally tolerant to these immunodominant epitopes. Mice expressing TSKB20, TSKB18, or both epitopes controlled T. cruzi infection and developed effector CD8 + T cells that maintained an activated phenotype. Memory CD8 + T cells from drug-cured TSKB-transgenic mice rapidly responded to secondary T. cruzi infection. In the absence of the response to TSKB20 and TSKB18, immunodominance did not shift to other known subdominant epitopes despite the capacity of these mice to expand epitope-specific T cells specific for the model antigen ovalbumin expressed by engineered parasites. Thus, CD8 + T cell responses tightly and robustly focused on a few epitopes within variant TS antigens appear to neither contribute to, nor detract from, the ability to control T. cruzi infection. These data also indicate that the relative position of an epitope within a CD8 + immunodominance hierarchy does not predict its importance in pathogen control.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3