Enhancement of RNA polymerase II initiation complexes by a novel DNA control domain downstream from the cap site of the cytomegalovirus major immediate-early promoter

Author:

Ghazal P1,Nelson J A1

Affiliation:

1. Department of Immunology, Scripps Clinic and Research Foundation, La Jolla, California 92037.

Abstract

The major immediate-early promoter (MIEP) of human cytomegalovirus is a remarkably strong RNA polymerase II transcription control unit. We have identified and characterized a novel regulatory domain associated with MIEP downstream from the initiation site of transcription. The downstream regulatory region was first identified by analyzing a series of mutations in the 5' untranslated leader exon. This regulatory domain was shown to enhance the number of functional initiation complexes without significantly altering the apparent elongation rate by RNA polymerase II transcription. In addition, run-off in vitro transcription and DNA-binding experiments identified two distinct downstream elements that specify the interaction of cellular transcription factors. One of these elements contains a reiterated sequence motif, present twice within the leader exon. The second element is an 18-bp sequence located at approximately nucleotide position +33 that is conserved between strains of cytomegalovirus from different species. On the basis of two criteria, an oligonucleotide competition assay and oligomerization upstream of the promoter, the binding of factors to the conserved box was shown to be critical for mediating the level of transcription from MIEP. Two discrete cellular nuclear proteins, designated LTF A and B (for leader transcription factor A and B binding factors), were found to specifically recognize the conserved element. This study of promoter-proximal elements within transcribed sequences demonstrates the recognition of the control domain at the DNA level that functions to increase the number of committed RNA polymerase II transcription complexes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3