The Last r Locus Unveiled: T4 RIII Is a Cytoplasmic Antiholin

Author:

Chen Yi12,Young Ry12

Affiliation:

1. Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA

2. Center for Phage Technology, Texas A&M University, College Station, Texas, USA

Abstract

ABSTRACT The latent period of phage T4, normally ∼25 min, can be extended indefinitely if the infected cell is superinfected after 5 min. This phenomenon, designated lysis inhibition (LIN), was first described in the 1940s and is genetically defined by mutations in diverse T4 r genes. RI, the main effector of LIN, has been shown to be secreted to the periplasm, where, upon activation by superinfection with a T-even virion, it binds to the C-terminal periplasmic domain of the T4 holin T and blocks its lethal permeabilization of the cytoplasmic membrane. Another r locus, rIII , has been the subject of conflicting reports. In this study, we show that RIII, an 82-amino-acid protein, is also required for LIN in both Escherichia coli B strains and E. coli K-12 strains. In T4Δ rIII infections, LIN was briefly established but was unstable. The overexpression of a cloned rIII gene alone impeded T-mediated lysis temporarily. However, coexpression of rIII and rI resulted in a stable LIN state. Bacterial two-hybrid assays and pulldown assays showed that RIII interacts with the cytoplasmic N terminus of T, which is a critical domain for holin function. We conclude that RIII is a T4 antiholin that blocks membrane hole formation by interacting directly with the holin. Accordingly, we propose an augmented model for T4 LIN that involves the stabilization of a complex of three proteins in two compartments of the cell: RI interacting with the C terminus of T in the periplasm and RIII interacting with the N terminus of T in the cytoplasm. IMPORTANCE Lysis inhibition is a unique feature of phage T4 in response to environmental conditions, effected by the antiholin RI, which binds to the periplasmic domain of the T holin and blocks its hole-forming function. Here we report that the T4 gene rIII encodes a cytoplasmic antiholin that, together with the main antiholin, RI, inhibits holin T by forming a complex of three proteins spanning two cell compartments.

Funder

HHS | U.S. Public Health Service

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3