Interception of Small Particles by Flocculent Structures, Sessile Ciliates, and the Basic Layer of a Wastewater Biofilm

Author:

Eisenmann Heinrich1,Letsiou Ioanna2,Feuchtinger Anette2,Beisker Wolfgang1,Mannweiler Ernst2,Hutzler Peter2,Arnz Patrik3

Affiliation:

1. Flow Cytometry Group1and

2. Institute of Pathology,2 National Research Center for Environment and Health, D-85764 Neuherberg/Munich, and

3. Institute of Water Quality and Waste Management, Technical University of Munich, D-85784 Garching,3 Germany

Abstract

ABSTRACT We investigated attachment processes of hydrophobic and hydrophilic particles (diameter = 1 μm) to mature biofilms grown on clay marbles in a sequencing batch biofilm reactor. During a treatment cycle with filtered wastewater containing different fluorescent beads, the progression of particle density in various biofilm compartments (carrier biofilm, basic biofilm layer, biofilm flocs, and sessile ciliates) was determined by flow cytometry, confocal laser scanning microscopy and automated image analysis. Particles were almost completely removed from wastewater by typical processes of particle retention: up to 58% of particles attached to clay marbles, up to 15% were associated with suspended flocs, and up to 10% were ingested by sessile ciliates. Ingestion of particles by ciliates was exceptionally high immediately after wastewater addition (1,200 particles grazer −1 h −1 ) and continued until approximately 14% of the water had been cleared by ciliate filter feeding. Most probably, ciliate bioturbation increases particle sorption to the basic biofilm. Backwashing of the reactor detached pieces of biofilm and thus released approximately 50% of the particles into rinsing water. Clay marbles in the upper part of the reactor were more efficiently abraded than in the lower part. No indications for selective attachment of the applied hydrophobic and hydrophilic beads were found. As a consequence of interception patterns, organisms at elevated biofilm structures are probably major profiteers of wastewater particles; among them, ciliates may be of major importance because of their highly active digestive food vacuoles.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3