The Sendai virus nucleocapsid exists in at least four different helical states

Author:

Egelman E H1,Wu S S1,Amrein M1,Portner A1,Murti G1

Affiliation:

1. Department of Molecular Biophysics and Biochemistry, New Haven, Connecticut 06511.

Abstract

Sendai virus nucleocapsids have been observed by electron microscopy to coexist in three different helical pitch conformations, 5.3, 6.8, and 37.5 nm. The 5.3- and 6.8-nm conformations are present both in uranyl acetate negatively stained preparations and in tantalum-tungsten metal-shadowed preparations, whereas the 37.5-nm conformation, which has not been previously reported, is present only in the shadowed preparations. The 5.3-nm pitch conformation appears to be a mixture of two discrete structural states, with a small difference in the twist of the structure between the two. We have used image reconstruction techniques on an averaged data set from eight negatively stained nucleocapsids to produce a three-dimensional reconstruction at 2.4-nm resolution of the structure in one of the 5.3-nm pitch states. There are 13.07 nucleocapsid protein (NP) subunits in each turn of the helix in this state. The helical repeat is 79.5 nm, containing 196 subunits in 15 turns of the left-handed 5.3-nm helix. The arrangement of subunits produces a 5.0-nm-diameter hollow core which forms an internal helical groove. The RNA accounts for about 3% of the mass of the nucleocapsid, and so its location is not conspicuous in the reconstruction. Because of the RNA remains associated with the NP subunits during mRNA transcription and genome replication, structural transitions in the nucleocapsid may determine the accessibility of the genome to polymerases. Alternatively, the large hollow core and internal helical groove we have reconstructed may allow access to the RNA even in the tightly coiled 5.3-nm pitch conformation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference36 articles.

1. Fine structure of Sendai virus nucleocapsid;Amano Y.;Jpn. J. Microbiol.,1971

2. Expression of animal virus genomes;Baltimore D.;Bacteriol. Rev.,1971

3. Replication of Sendai virus. II. Steps in virus assembly;Blair C. D.;J. Virol.,1970

4. The morphology of SV5 virus;Choppin P. W.;Virology,1964

5. The sense of the helix of paramyxovirus nucleocapsids;Compans R. W.;J. Mol. Biol.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3