Life Cycle Heterogeneity in Animal Models of Human Papillomavirus-Associated Disease

Author:

Peh Woei Ling1,Middleton Kate1,Christensen Neil2,Nicholls Philip3,Egawa Kiyofumi4,Sotlar Karl5,Brandsma Janet6,Percival Alan7,Lewis Jon8,Liu Wen Jun9,Doorbar John1

Affiliation:

1. National Institute for Medical Research, The Ridgeway, Mill Hill, London

2. The Jake Gittlen Cancer Research Institute, The Milton S. Hershey Medical Center, Hershey, Pennsylvania

3. Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia

4. Department of Dermatology, Kumamoto University School of Medicine, Kumamoto, Japan

5. Institute for Pathology, Tubingen, Germany

6. Yale University School of Medicine, New Haven, Connecticut

7. Department of Podiatry, Nene College, Northampton

8. Roche Discovery, Welwyn Garden City, Welwyn, United Kingdom

9. Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Australia

Abstract

ABSTRACT Animal papillomaviruses are widely used as models to study papillomavirus infection in humans despite differences in genome organization and tissue tropism. Here, we have investigated the extent to which animal models of papillomavirus infection resemble human disease by comparing the life cycles of 10 different papillomavirus types. Three phases in the life cycles of all viruses were apparent using antibodies that distinguish between early events, the onset of viral genome amplification, and the expression of capsid proteins. The initiation of these phases follows a highly ordered pattern that appears important for the production of virus particles. The viruses examined included canine oral papillomavirus, rabbit oral papillomavirus (ROPV), cottontail rabbit papillomavirus (CRPV), bovine papillomavirus type 1, and human papillomavirus types 1, 2, 11, and 16. Each papillomavirus type showed a distinctive gene expression pattern that could be explained in part by differences in tissue tropism, transmission route, and persistence. As the timing of life cycle events affects the accessibility of viral antigens to the immune system, the ideal model system should resemble human mucosal infection if vaccine design is to be effective. Of the model systems examined here, only ROPV had a tissue tropism and a life cycle organization that resembled those of the human mucosal types. ROPV appears most appropriate for studies of the life cycles of mucosal papillomavirus types and for the development of prophylactic vaccines. The persistence of abortive infections caused by CRPV offers advantages for the development of therapeutic vaccines.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3