U S 3 Protein Kinase of Herpes Simplex Virus 1 Blocks Caspase 3 Activation Induced by the Products of U S 1.5 and U L 13 Genes and Modulates Expression of Transduced U S 1.5 Open Reading Frame in a Cell Type-Specific Manner

Author:

Hagglund Ryan1,Munger Joshua1,Poon Alice P. W.1,Roizman Bernard1

Affiliation:

1. The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637

Abstract

ABSTRACT The coding domain of the herpes simplex virus type 1 (HSV-1) α22 gene encodes two proteins, the 420-amino-acid infected-cell protein 22 (ICP22) and U S 1.5, a protein colinear with the carboxyl-terminal domain of ICP22. In HSV-1-infected cells, ICP22 and U S 1.5 are extensively modified by the U L 13 and U S 3 viral protein kinases. In this report, we show that in contrast to other viral proteins defined by their properties as α proteins, U S 1.5 becomes detectable and accumulated only at late times after infection. Moreover, significantly more U S 1.5 protein accumulated in cells infected with a mutant lacking the U L 13 gene than in cells infected with wild-type virus. To define the role of viral protein kinases on the accumulation of U S 1.5 protein, rabbit skin cells or Vero cells were exposed to recombinant baculoviruses that expressed U S 1.5, U L 13, or U S 3 proteins under a human cytomegalovirus immediate-early promoter. The results were as follows. (i) Accumulation of the U S 1.5 protein was reduced by concurrent expression of the U L 13 protein kinase and augmented by concurrent expression of the U S 3 protein kinase. The magnitude of the reduction or increase in the accumulation of the U S 1.5 protein was cell type dependent. The effect of U L 13 kinase appears to be specific inasmuch as it did not affect the accumulation of glycoprotein D in cells doubly infected by recombinant baculoviruses expressing these genes. (ii) The reduction in accumulation of the U S 1.5 protein was partially due to proteasome-dependent degradation. (iii) Both U S 1.5 and U L 13 proteins activated caspase 3, indicative of programmed cell death. (iv) Concurrent expression of the U S 3 protein kinase blocked activation of caspase 3. The results are concordant with those published elsewhere (J. Munger and B. Roizman, Proc. Natl. Acad. Sci. USA 98:10410–10415, 2001) that the U S 3 protein kinase can block apoptosis by degradation or posttranslational modification of BAD.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3