Mutation of Capsid Protein Phosphorylation Sites Abolishes Cauliflower Mosaic Virus Infectivity

Author:

Chapdelaine Yvan1,Kirk David1,Karsies Aletta1,Hohn Thomas1,Leclerc Denis1

Affiliation:

1. Friedrich-Miescher Institute, CH-4002 Basel, Switzerland

Abstract

ABSTRACT The cauliflower mosaic virus (CaMV) capsid protein is derived by bidirectional processing of the precapsid protein (CP56). We expressed several derivatives of CP56 in Escherichia coli and used them as substrates for virus-associated kinase and casein kinase II purified from plant cells. Three serine residues located at the N terminus of the mature viral protein CP44 were identified as phosphorylation targets. A mutation of one of them in the viral context had little or no effect on viral infectivity, but a mutation of all three serines abolished infectivity. The mapping of phosphorylation sites in CP44, but not CP39 or CP37, and immunodetection of the Zn finger motif in CP44 and CP39, but not CP37, support the model that CP39 is produced from CP44 by N-terminal processing and CP37 is produced from CP39 by C-terminal processing. We discuss the possible role of phosphorylation in the processing and assembly of CaMV capsid protein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3