Selectively Reduced tat mRNA Heralds the Decline in Productive Human Immunodeficiency Virus Type 1 Infection in Monocyte-Derived Macrophages

Author:

Sonza Secondo1,Mutimer Helen P.1,O'Brien Kate1,Ellery Philip1,Howard Jane L.2,Axelrod Jonathan H.3,Deacon Nicholas J.4,Crowe Suzanne M.1,Purcell Damian F. J.2

Affiliation:

1. AIDS Pathogenesis Research Unit

2. Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia

3. Goldyne Savad Institute for Gene Therapy, Hadassah Medical Organization, Jerusalem 91120, Israel

4. AIDS Molecular Biology Unit, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004

Abstract

ABSTRACT The transcription and splicing of human immunodeficiency virus type 1 (HIV-1) mRNA in primary blood monocyte-derived macrophages (MDM) and CD4 + peripheral blood lymphocytes (PBL) were compared to determine whether any differences might account for the slower noncytopathic infection of cells of the macrophage lineage. The expression of regulatory mRNAs during acute infection of MDM was delayed by about 12 h compared to that of PBL. In each cell type, an increase in spliced viral mRNAs slightly preceded virus production from the culture. Following the peak of productive infection, there was a proportional decrease in the expression of all regulatory mRNAs detected in PBL. In MDM, a dramatic additional decrease specifically in the tat mRNA species heralded a reduction in virus production. This decline in tat mRNA was reflected by a concomitant decrease in Tat activity in the cells and occurred with the same kinetics irrespective of the age of the cells when infected. Addition of exogenous Tat protein elicited a burst of virus production from persistently infected MDM, suggesting that the decrease in virus production from the cultures is a consequence of the reduction in tat mRNA levels. Our results show that modulation of HIV-1 mRNAs in macrophages during long-term infection, which is dependent on the period of infection rather than cell differentiation or maturation, results in a selective reduction of Tat protein levels at the commencement of a persistent, less productive phase of infection. Determination of the mechanism of this mRNA modulation may lead to novel targets for control of replication in these important viral reservoirs .

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3