The Nucleocapsid Protein and Nonstructural Protein 10 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Enhance CD83 Production via NF-κB and Sp1 Signaling Pathways

Author:

Chen Xi1,Zhang Qiaoya1,Bai Juan1,Zhao Yongxiang1,Wang Xianwei1,Wang Haiyan1,Jiang Ping12

Affiliation:

1. Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China

2. Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China

Abstract

ABSTRACT Porcine reproductive and respiratory syndrome, caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a panzootic disease that is one of the most economically costly diseases to the swine industry. A key aspect of PRRSV virulence is that the virus suppresses the innate immune response and induces persistent infection, although the underlying mechanisms are not well understood. The dendritic cell (DC) marker CD83 belongs to the immunoglobulin superfamily and is associated with DC activation and immunosuppression of T cell proliferation when expressed as soluble CD83 (sCD83). In this study, we show that PRRSV infection strongly stimulates CD83 expression in porcine monocyte-derived DCs (MoDCs) and that the nucleocapsid (N) protein and nonstructural protein 10 (nsp10) of PRRSV enhance CD83 promoter activity via the NF-κB and Sp1 signaling pathways. R43A and K44A amino acid substitution mutants of the N protein suppress the N protein-mediated increase of CD83 promoter activity. Similarly, P192-5A and G214-3A mutants of nsp10 (with 5 and 3 alanine substitutions beginning at residues P192 and G214, respectively) abolish the nsp10-mediated induction of the CD83 promoter. Using reverse genetics, four mutant viruses (rR43A, rK44A, rP192-5A, and rG214-3A) and four revertants [rR43A(R), rK44A(R), rP192-5A(R), and rG214-3A(R)] were generated. Decreased induction of CD83 in MoDCs was observed after infection by mutants rR43A, rK44A, rP192-5A, and rG214-3A, in contrast to the results obtained using rR43A(R), rK44A(R), rP192-5A(R), and rG214-3A(R). These findings suggest that PRRSV N and nsp10 play important roles in modulating CD83 signaling and shed light on the mechanism by which PRRSV modulates host immunity. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically costly pathogens affecting the swine industry. It is unclear how PRRSV inhibits the host's immune response and induces persistent infection. The dendritic cell (DC) marker CD83 belongs to the immunoglobulin superfamily and has previously been associated with DC activation and immunosuppression of T cell proliferation and differentiation when expressed as soluble CD83 (sCD83). In this study, we found that PRRSV infection induces sCD83 expression in porcine MoDCs via the NF-κB and Sp1 signaling pathways. The viral nucleocapsid protein, nonstructural protein 1 (nsp1), and nsp10 were shown to enhance CD83 promoter activity. Amino acids R43 and K44 of the N protein, as well as residues 192 to 196 (P192-5) and 214 to 216 (G214-3) of nsp10, play important roles in CD83 promoter activation. These findings provide new insights into the molecular mechanism of immune suppression by PRRSV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3