Ecology of Candida albicans gut colonization: inhibition of Candida adhesion, colonization, and dissemination from the gastrointestinal tract by bacterial antagonism

Author:

Kennedy M J,Volz P A

Abstract

Antibiotic-treated and untreated Syrian hamsters were inoculated intragastrically with Candida albicans to determine whether C. albicans could opportunistically colonize the gastrointestinal tract and disseminate to visceral organs. Antibiotic treatment decreased the total population levels of the indigenous bacterial flora and predisposed hamsters to gastrointestinal overgrowth and subsequent systemic dissemination by C. albicans in 86% of the animals. Both control hamsters not given antibiotics and antibiotic-treated animals reconventionalized with an indigenous microflora showed significantly lower gut populations of C. albicans, and C. albicans organisms were cultured from the visceral organs of 0 and 10% of the animals, respectively. Conversely, non-antibiotic-treated hamsters inoculated repeatedly with C. albicans had high numbers of C. albicans in the gut, and viable C. albicans was recovered from the visceral organs of 53% of the animals. Examination of the mucosal surfaces from test and control animals indicated further that animals which contained a complex indigenous microflora had significantly lower numbers of C. albicans associated with their gut walls than did antibiotic-treated animals. The ability of C. albicans to associate with intestinal mucosal surfaces also was tested by an in vitro adhesion assay. The results indicate that the indigenous microflora reduced the mucosal association of C. albicans by forming a dense layer of bacteria in the mucus gel, out-competing yeast cells for adhesion sites, and producing inhibitor substances (possibly volatile fatty acids, secondary bile acids, or both) that reduced C. albicans adhesion. It is suggested, therefore, that the indigenous intestinal microflora suppresses C. albicans colonization and dissemination from the gut by inhibiting Candida-mucosal association and reducing C. albicans population levels in the gut.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3