Competition of Various β-Lactam Antibiotics for the Major Penicillin-Binding Proteins of Helicobacter pylori : Antibacterial Activity and Effects on Bacterial Morphology

Author:

DeLoney Cindy R.1,Schiller Neal L.1

Affiliation:

1. Division of Biomedical Sciences, University of California, Riverside, Riverside, California 92521

Abstract

ABSTRACT The penicillin-binding proteins (PBPs) of helical (log-phase) Helicobacter pylori ATCC 43579 were identified by using biotinylated ampicillin. The major PBPs had apparent molecular masses of 47, 60, 63, and 66 kDa; an additional minor PBP of 95 to 100 kDa was also detected. The relative affinities of various β-lactams for these PBPs were tested by competitive-binding assays. Only PBP63 appeared to be significantly bound to each of the competing antibiotics, whereas PBP66 strongly bound mezlocillin, oxacillin, amoxicillin, and ceftriaxone. Whereas most of the β-lactams significantly bound two or more PBPs, aztreonam specifically targeted PBP63. The influence of sub-MICs of these β-lactams on the morphologies of log-phase H. pylori was observed at both the phase-contrast and transmission electron microscopy levels. Each of the eight β-lactams examined induced blebbing and sphere formation, whereas aztreonam was the only antibiotic studied which induced pronounced filamentation in H. pylori . Finally, studies comparing the PBPs of helical (log-phase) cultures with those of coccoid (7-, 14-, and 21-day-old) cultures of H. pylori revealed that the major PBPs at 60 and 63 kDa seen in the helical form were almost undetectable in the coccoid forms, whereas PBP66 remained the major PBP in the coccoid forms, although somewhat reduced in level compared to the helical form. PBP47 was present in both forms at approximately equal concentrations. These studies thus identified the major PBPs in both helical and coccoid forms of H. pylori and compared the relative affinities of seven different β-lactams for the PBPs in the helical forms and their effects on bacterial morphology.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3