Kinetics of Antiviral Activity and Intracellular Pharmacokinetics of Human Immunodeficiency Virus Type 1 Protease Inhibitors in Tissue Culture

Author:

Nascimbeni Michelina1,Lamotte Claire2,Peytavin Gilles2,Farinotti Robert2,Clavel François1

Affiliation:

1. Laboratoire de Recherche Antivirale, IMEA-INSERM,1 and

2. Laboratoire de Pharmacologie,2 Hôpital Bichat-Claude Bernard, Paris, France

Abstract

ABSTRACT We have examined the kinetics of the inhibition of human immunodeficiency virus type 1 (HIV-1) particle infectivity by protease inhibitors (PIs) in cell culture, using either transfected HeLa cells or infected peripheral blood mononuclear cells (PBMCs) as producers of infectious virions. Both the kinetics of the initiation of antiviral activity after addition of the PIs to these cultures and the kinetics of restoration of virion infectivity after removal of the PIs from the treated cultures were examined. We found that the kinetics of initiation of particle infectivity inhibition produced by a high extracellular concentration (5 μM) of the inhibitors were similar for all five inhibitors tested: loss of particle infectivity was perceptible as early as 1 h after the initiation of PI treatment and increased gradually thereafter. By contrast, the durability of this antiviral effect following removal of the drug from the culture varied dramatically according to the drug studied. In transfected HeLa cells, saquinavir and nelfinavir exerted the most prolonged inhibition, with the half-lives of their antiviral activities being greater than 24 h, while ritonavir exerted an intermediate length of inhibition (18 h) and indinavir and amprenavir exerted a reproducibly shorter length of inhibition (5 h). For all five tested PIs, these kinetics were significantly faster in PBMCs than in HeLa cells. The striking differences in antiviral kinetics observed among the different PIs appear mostly due to differences in their intracellular concentrations and/or rates of cellular clearance. Our observations, although limited to tissue culture conditions, may help delineate the cellular parameters of the antiviral activities of HIV-1 PIs and further optimize the efficiencies of these antiretrovirals in vivo.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3