Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines

Author:

Lissolo L1,Maitre-Wilmotte G1,Dumas P1,Mignon M1,Danve B1,Quentin-Millet M J1

Affiliation:

1. Pasteur Merieux Sérums et Vaccins, Marcy l'Etoile, France.

Abstract

Because the meningococcal transferrin receptor was shown to elicit bactericidal and protective antibodies in laboratory animals, we undertook a study of the protective role of each of the polypeptides within the Tbp1-Tbp2 complex. We developed a procedure to purify from Neisseria meningitidis B16B6 the two proteins in milligram amounts and raised specific antisera in rabbits and mice. Only antisera specific for Tbp2 displayed bactericidal activity against the parent strain. Mice immunized with purified Tbp2 survived a lethal challenge to a similar degree as animals immunized with the Tbp1-Tbp2 complex, demonstrating that Tbp2 played an important role in the protective activity observed with the complex. Both Tbp1- and Tbp2-specific antisera inhibited transferrin binding to the purified receptor in a solid-phase binding assay, suggesting that the antibodies were able to interact with the Tbp1 molecule only when it was removed from its membrane environment. Finally, Tbp2-specific immunoglobulins were able to lower the growth rate of the meningococci when human transferrin was their sole iron source. Therefore, in all four different systems tested, Tbp2 or antibodies specific for Tbp2 displayed biological characteristics close to those of the Tbp1-Tbp2 complex. This suggests that Tbp2 plays an important role in the protective activity of the complex, eliciting antibodies that are not only bactericidal but also inhibitory for meningococcal growth.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3