Role of the 30S ribosomal subunit, initiation factors, and specific ion concentration in barotolerant protein synthesis in Pseudomonas bathycetes

Author:

Landau J V,Smith W P,Pope D H

Abstract

Washed (1 M NH4Cl) ribosomes from Pseudomonas bathycetes, Pseudomonas fluorescens, and Escherichia coli were tested for their ability to synthesize protein or polypeptide at high pressure when used as such, when recombined with homologous initiation factors, and when recombined with heterologous initiation factors. The responses of natural messenger ribonucleic acid (MS-2)-directed systems to pressure were independent of the source of initiation factors and paralleled those of the washed ribosomes in polyuridylate-directed systems. In all cases, the responses to pressure were parallel to those obtained when unwashed ribosomes were utilized; therefore, we concluded that the initiation factors were interchangeable among these organisms, and that these factors did not play a critical role in determining the pressure responses of the protein-synthesizing systems. P. bathycetes ribosomal subunits were isolated under a variety of ionic conditions. These were tested for their ability to synthesize protein and polyphenylalanine at a variety of pressures when used in reconstituted P. bathycetes homologous systems and in hybrid systems with ribosomal subunits from E. coli and P. fluorescens. O. bathycetes 30S subunits, isolated in a buffer solution containing 0 mM NaCl and O mM KC] were functional at any pressure; those isolated in the presence of 150 mM NaCl and 0 mM KCl were functional at 1 atmosphere but barosensitive, and those isolated in the presence of O mM NaCl and 150 mM KCl retained the ion-mediated barotolerance characteristic of crude P. bathycetes ribosome preparations. The 50S subunit remained functional regardless of the method of isolation, and it had no effect on pressure sensitivity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3