Abstract
Inhibition of deoxyribonucleic acid (DNA) synthesis in Escherichia coli by chemical inhibitors or by shifting cultures of temperature-sensitive elongation (dnaE and dnaB) or initiation (dnaA) mutants to nonpermissive conditions led to greatly increased synthesis of the enzyme ribonucleoside diphosphate reductase, which catalyzes the first reaction unique to the pathway leading to DNA replication. In contrast to the Gudas and Pardee proposed model for control of the synthesis of DNA repair enzymes, in which both DNA inhibition and DNA degradation are involved, DNA synthesis inhibition in recA, recB, recC, or lex strains results in increased synthesis of ribonucleotide reductase, which suggests that DNA degradation is not required. We propose that inhibition of DNA synthesis causes a cell to accumulate an unknown compound that stimulates the initiation of a new round of DNA replication, and that this same signal is used to induce ribonucleotide reductase synthesis.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献