Role of Accessory DNA Polymerases in DNA Replication in Escherichia coli : Analysis of the dnaX36 Mutator Mutant

Author:

Gawel Damian1,Pham Phuong T.1,Fijalkowska Iwona J.2,Jonczyk Piotr2,Schaaper Roel M.1

Affiliation:

1. Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709

2. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland

Abstract

ABSTRACT The dnaX36 (TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (−1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the τ subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of τ, essential for interaction of τ with the α (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered α-τ interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX 36 with mutM, mutY , and recA defects, support our assumption that dnaX36 -mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a ( dinB ) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of τ subunit, in securing a high fidelity of replication.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Mutation Controversy;Reference Module in Life Sciences;2024

2. Novel Escherichia coli active site dnaE alleles with altered base and sugar selectivity;Molecular Microbiology;2021-07-31

3. Haloferax volcanii —a model archaeon for studying DNA replication and repair;Open Biology;2020-12

4. Adaptive Mutation Controversy;Encyclopedia of Evolutionary Biology;2016

5. Limits and patterns of cytomegalovirus genomic diversity in humans;Proceedings of the National Academy of Sciences;2015-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3