Regulation of Autophosphorylation of Escherichia coli Nitrogen Regulator II by the PII Signal Transduction Protein

Author:

Jiang Peng1,Ninfa Alexander J.1

Affiliation:

1. Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan

Abstract

ABSTRACT The nitrogen regulator II (NRII or NtrB)-NRI (NtrC) two-component signal transduction system regulates the transcription of nitrogen-regulated genes in Escherichia coli . The NRII protein has both kinase and phosphatase activities and catalyzes the phosphorylation and dephosphorylation of NRI, which activates transcription when phosphorylated. The phosphatase activity of NRII is activated by the PII signal transduction protein. We showed that PII was also an inhibitor of the kinase activity of NRII. The data were consistent with the hypothesis that the kinase and phosphatase activities of two-component system kinase/phosphatase proteins are coordinately and reciprocally regulated. The ability of PII to regulate NRII is allosterically controlled by the small-molecule effector 2-ketoglutarate, which binds to PII. We studied the effect of 2-ketoglutarate on the regulation of the kinase and phosphatase activities of NRII by PII, using a coupled enzyme system to measure the rate of cleavage of ATP by NRII. The data were consistent with the following hypothesis: when not complexed with 2-ketoglutarate, PII cannot bind to NRII and has no effect on its competing NRI kinase and phosphatase activities. Under these conditions, the kinase activity of NRII is dominant. At low 2-ketoglutarate concentrations, PII trimers complexed with a single molecule of 2-ketoglutarate interact with NRII to inhibit its kinase activity and activate its phosphatase activity. However, at high 2-ketoglutarate concentrations, PII binds additional ligand molecules and is rendered incapable of binding to NRII, thereby releasing inhibition of NRII’s kinase activity and effectively inhibiting its phosphatase activity (by failing to stimulate it).

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3