Evidence for a Holin-Like Protein Gene Fully Embedded Out of Frame in the Endolysin Gene of Staphylococcus aureus Bacteriophage 187

Author:

Loessner Martin J.1,Gaeng Susanne1,Scherer Siegfried1

Affiliation:

1. Institut für Mikrobiologie, Forschungszentrum für Milch und Lebensmittel Weihenstephan, Technische Universität München, D-85350 Freising, Germany

Abstract

ABSTRACT We have cloned, sequenced, and characterized the genes encoding the lytic system of the unique Staphylococcus aureus phage 187. The endolysin gene ply187 encodes a large cell wall-lytic enzyme (71.6 kDa). The catalytic site, responsible for the hydrolysis of staphylococcal peptidoglycan, was mapped to the N-terminal domain of the protein by the expression of defined ply187 domains. This enzymatically active N terminus showed convincing amino acid sequence homology to an N -acetylmuramoyl- l -alanine amidase, whereas the C-terminal part, whose function is unknown, revealed striking relatedness to major staphylococcal autolysins. An additional reading frame was identified entirely embedded out of frame (+1) within the 5′ region of ply187 and was shown to encode a small, hydrophobic protein of holin-like function. The hol187 gene features a dual-start motif, possibly enabling the synthesis of two products of different lengths (57 and 55 amino acids, respectively). Overproduction of Hol187 in Escherichia coli resulted in growth retardation, leakiness of the cytoplasmic membrane, and loss of de novo ATP synthesis. Compared to other holins identified to date, Hol187 completely lacks the highly charged C terminus. The secondary structure of the polypeptide is predicted to consist of two small, antiparallel, hydrophobic, transmembrane helices. These are supposed to be essential for integration into the membrane, since site-specific introduction of negatively charged amino acids into the first transmembrane domain (V7D G8D) completely abolished the function of the Hol187 polypeptide. With antibodies raised against a synthetic 18-mer peptide representing a central part of the protein, it was possible to detect Hol187 in the cytoplasmic membrane of phage-infected S. aureus cells. An important indication that the protein actually functions as a holin in vivo was that the gene (but not the V7D G8D mutation) was able to complement a phage λ S am mutation in a nonsuppressing E. coli HB101 background. Plaque formation by λgt11:: hol187 indicated that both phage genes have analogous functions. The data presented here indicate that a putative holin is encoded on a different reading frame within the enzymatically active domain of ply187 and that the holin is synthesized during the late stage of phage infection and found in the cytoplasmic membrane, where it causes membrane lesions which are thought to enable access of Ply187 to the peptidoglycan of phage-infected Staphylococcus cells.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3