Deletion of New Covalently Linked Cell Wall Glycoproteins Alters the Electrophoretic Mobility of Phosphorylated Wall Components of Saccharomyces cerevisiae

Author:

Mrsa Vladimir1,Ecker Margit1,Strahl-Bolsinger Sabine1,Nimtz Manfred2,Lehle Ludwig1,Tanner Widmar1

Affiliation:

1. Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg,1 and

2. Protein Glycosylation Group, Gesellschaft für Biotechnologische Forschung, 38124 Braunschweig,2 Germany

Abstract

ABSTRACT The incorporation of radioactive orthophosphate into the cell walls of Saccharomyces cerevisiae was studied. 33 P-labeled cell walls were extensively extracted with hot sodium dodecyl sulfate (SDS). Of the remaining insoluble radioactivity more than 90% could be released by laminarinase. This radioactive material stayed in the stacking gel during SDS-polyacrylamide gel electrophoresis but entered the separating gel upon treatment with N -glycosidase F, indicating that phosphate was linked directly or indirectly to N-mannosylated glycoproteins. The phosphate was bound to covalently linked cell wall proteins as mannose-6-phosphate, the same type of linkage shown previously for soluble mannoproteins (L. Ballou, L. M. Hernandez, E. Alvarado, and C. E. Ballou, Proc. Natl. Acad. Sci. USA 87:3368–3372, 1990). From the phosphate-labeled glycoprotein fraction released by laminarinase, three cell wall mannoproteins, Ccw12p, Ccw13p and Ccw14p, were isolated and identified by N-terminal sequencing. For Ccw13p (encoded by DAN1 [also called TIR3 ]) and Ccw12p the association with the cell wall has not been described before; Ccw14p is identical with cell wall protein Icwp (I. Moukadiri, J. Armero, A. Abad, R. Sentandreu, and J. Zueco, J. Bacteriol. 179:2154–2162, 1997). In ccw12 , ccw13 , or ccw14 single or double mutants neither the amount of radioactive phosphate incorporated into cell wall proteins nor its position in the stacking gel was changed. However, the triple mutant brought about a shift of the 33 P-labeled glycoprotein components from the stacking gel into the separating gel. The disruption of CCW12 results in a pronounced sensitivity of the cells to calcofluor white and Congo red. In addition, the ccw12 mutant shows a decrease in mating efficiency and a defect in agglutination.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3