Bioinformatics and Experimental Analysis of Proteins of Two-Component Systems in Myxococcus xanthus

Author:

Shi Xingqi1,Wegener-Feldbrügge Sigrun1,Huntley Stuart1,Hamann Nils1,Hedderich Reiner1,Søgaard-Andersen Lotte1

Affiliation:

1. Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str., 35043 Marburg, Germany

Abstract

ABSTRACT Proteins of two-component systems (TCS) have essential functions in the sensing of external and self-generated signals in bacteria and in the generation of appropriate output responses. Accordingly, in Myxococcus xanthus , TCS are important for normal motility and fruiting body formation and sporulation. Here we analyzed the M. xanthus genome for the presence and genetic organization of genes encoding TCS. Two hundred seventy-two TCS genes were identified, 251 of which are not part of che gene clusters. We report that the TCS genes are unusually organized, with 55% being orphan and 16% in complex gene clusters whereas only 29% display the standard paired gene organization. Hybrid histidine protein kinases and histidine protein kinases predicted to be localized to the cytoplasm are overrepresented among proteins encoded by orphan genes or in complex gene clusters. Similarly, response regulators without output domains are overrepresented among proteins encoded by orphan genes or in complex gene clusters. The most frequently occurring output domains in response regulators are involved in DNA binding and cyclic-di-GMP metabolism. Our analyses suggest that TCS encoded by orphan genes and complex gene clusters are functionally distinct from TCS encoded by paired genes and that the connectivity of the pathways made up of TCS encoded by orphan genes and complex gene clusters is different from that of pathways involving TCS encoded by paired genes. Experimentally, we observed that orphan TCS genes are overrepresented among genes that display altered transcription during fruiting body formation. The systematic analysis of the 25 orphan genes encoding histidine protein kinases that are transcriptionally up-regulated during development showed that 2 such genes are likely essential for viability and identified 7 histidine protein kinases, including 4 not previously characterized that have important function in fruiting body formation or spore germination.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference68 articles.

1. Alm, E., K. Huang, and A. Arkin. 2006. The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput. Biol. 2 : e143.

2. Amikam, D., and M. Y. Galperin. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 1 : 3-6.

3. Appleby, J. L., J. S. Parkinson, and R. B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86 : 845-848.

4. Biondi, E. G., S. J. Reisinger, J. M. Skerker, M. Arif, B. S. Perchuk, K. R. Ryan, and M. T. Laub. 2007. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444 : 899-904.

5. Burbulys, D., K. A. Trach, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64 : 545-552.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3