Efficacy of Locally Delivered Polyclonal Immunoglobulin against Pseudomonas aeruginosa Peritonitis in a Murine Model

Author:

Barekzi Nazir A.1,Poelstra Kornelis A.1,Felts Adrian G.1,Rojas Ignacio A.1,Slunt Jeffrey B.2,Grainger David W.2

Affiliation:

1. Anthony G. Gristina Institute for Biomedical Research (formerly Medical Sciences Research Institute)1 and

2. GAMMA-A Technologies, Inc.,2 Herndon, Virginia 20170

Abstract

ABSTRACT Infectious peritonitis results from bacterial contamination of the abdominal cavity. Conventional antibiotic treatment is complicated both by the emergence of antibiotic-resistant bacteria and by increased patient populations intrinsically at risk for nosocomial infections. To complement antibiotic therapies, the efficacy of direct, locally applied pooled human immunoglobulin G (IgG) was assessed in a murine model (strains CF-1, CD-1, and CFW) of peritonitis caused by intraperitoneal inoculations of 10 6 or 10 7 CFU of Pseudomonas aeruginosa (strains IFO-3455, M-2, and MSRI-7072). Various doses of IgG (0.005 to 10 mg/mouse) administered intraperitoneally simultaneously with local bacterial challenge significantly increased survival in a dose-dependent manner. Local intraperitoneal application of 10 mg of IgG increased animal survival independent of either the P. aeruginosa or the murine strains used. A local dose of 10 mg of IgG administered up to 6 h prophylactically or at the time of bacterial challenge resulted in 100% survival. Therapeutic 10-mg IgG treatment given up to 12 h postinfection also significantly increased survival. Human IgG administered to the mouse peritoneal cavity was rapidly detected systemically in serum. Additionally, administered IgG in peritoneal lavage fluid samples actively opsonized and decreased the bacterial burden via phagocytosis at 2 and 4 h post-bacterial challenge. Tissue microbial quantification studies showed that 1.0 mg of locally applied IgG significantly reduced the bacterial burden in the liver, peritoneal cavity, and blood and correlated with reduced levels of interleukin-6 in serum.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3