Slow-Release Inoculation Allows Sustained Biodegradation of γ-Hexachlorocyclohexane

Author:

Mertens Birgit1,Boon Nico1,Verstraete Willy1

Affiliation:

1. Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

Abstract

ABSTRACT This study investigated the feasibility of a slow-release inoculation approach as a bioaugmentation strategy for the degradation of lindane (γ-hexachlorocyclohexane [γ-HCH]). Slow-release inoculation of Sphingomonas sp. γ 1-7 was established in both liquid and soil slurry microcosms using open-ended silicone tubes in which the bacteria are encapsulated in a protective nutrient-rich matrix. The capacity of the encapsulated cells to degrade lindane under aerobic conditions was evaluated in comparison with inoculation of free-living cells. Encapsulation of cells in tubes caused the removal of lindane by adsorption to the silicone tubes but also ensured prolonged biodegradation activity. Lindane degradation persisted 2.2 and 1.4 times longer for liquid and soil slurry microcosms, respectively, than that for inoculation with free cells. While inoculation of free-living cells led to a loss in lindane-degrading activity in limited time intervals, encapsulation in tubes allowed for a more stable actively degrading community. The loss in degrading activity was linked to the loss of the linA gene, encoding γ-HCH dehydrochlorinase (LinA), which is involved in the initial steps of the lindane degradation pathway. This work shows that a slow-release inoculation approach using a catabolic strain encapsulated in open-ended tubes is a promising bioaugmentation tool for contaminated sites, as it can enhance pollutant removal and can prolong the degrading activity in comparison with traditional inoculation strategies.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Production of a Rich Fertilizer Base for Plants from Waste Organic Residues by Microbial Formulation Technology;Microorganisms;2024-03-07

2. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil;World Journal of Microbiology and Biotechnology;2022-10-20

3. Microbial‐based Bioremediation at a Global Scale;Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture;2022-09-14

4. Advances in microbial and enzymatic degradation of lindane at contaminated sites;Biological Approaches to Controlling Pollutants;2022

5. Emerging issues and challenges for microbes-assisted remediation;Microbes and Microbial Biotechnology for Green Remediation;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3